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It is shown by a linear analysis .fi)r stability that .for partial Rayleigh numbers R/ and R 2 that have 

different signs, there exist two anomalous regions with monotonic (R/ < O, R 2 > O) and oscillatory 

(RI > O, R2 < O) instabili~ where the densi~ at the bottom is higher than at the top. The e~perimental 
data obtained confirm the presence of  these two regions of  instability, and the position of  the stabili~ 

boundaries is well described by the given theoly .for mixtures with a linear distribution of  the concen- 

tration. For systems with a pronounced nonlineari~ in the distribution o f  the conceno'ations, agree- 

ment between theory and experiment is violated. 

1. In binary mixtures tbr a specified geometry of the channel (Fig. 1) at a negative gradient of the 
density (the density at the top is lower than the density at the bottom), the torce of gravity virtually does not 
affect the velocity of mixing of the components, since mechanical equilibrium of the inhomogeneous mixture 
is realized; this equilibrium becomes unstable with the opposite direction of the gradient of the density and, as 
a result, gravitational concentration convection arises. It seemed that the addition of a third component to the 
system should not lead to a qualitative change in its behavior compared to a binary mixture. However, experi- 
mental studies of mixing of the components showed that convective flows can arise in ternary mixtures under 
conditions of stable stratification when the density at the bottom is higher than at the top [1-4]. To understand 
the reasons for the occurrence of anomalous concentration convection, it was necessary to pertbrm a linear 
analysis for stability [5-7]. But for isothermal multicomponent gas systems this analysis was performed only 
tbr the case of a plane horizontal layer, and within the framework of the chosen diffusion model it had an 
estimative character [8]. We consider the case of isothermal diffusion instability of ternary gas mixtures for a 
plane vertical channel (Fig. lb), which does not always correspond to experiment, where a cylindrical capillary 
was also used, but the simple geometry of the channel allows one to obtain an analytical solution of the prob- 
lem of the stability of the diffusion in the complicated situation where two "thermodynamic forces" and two 
independent gradients of the concentration act simultaneously. It should be assumed that the main features of 
diffusion instability and related effects will correspond to the experimental data (see, e.g., [1-4]). 

2. According to [5, 9], we assume that the macroscopic motion of an isothermal ternary gas mixture is 

described by a general system of hydrodynamic equations that involves the Navier-Stokes equations of motion 
and the equations of continuity and mass transfer of the components. Considering the condition of independent 

3 
diffusion, where Eji--~= 0, E ci = 1, we have the following system of equations: 

i=1 i=1 

p [-~--++ (u7-> V)u-K~l = -  Vp + rive u--->+ (~  + ~/V div u-->+ p~ ,  
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Fig. I. Geometry of the problem: a) diffusion cell of a two-column appa- 
ratus; b) diffusion channel. 

-~-t + div (pu-->)= 0 ,  p~O(~-~+u-~Vci)=-divji--~, 

.li = - -  P (DIIVCI + DI2VC2) , J2 = - P (D21Vcl + D~,,Vc~), 

(2.1) 

The quantities D~- and the coefficients of diffusion of the binary gas mixtures are related as 

• DI3 [clD32+(c2+c3) DI2] • clD23 (DI2-DI3) 
D l i -  clD23+c2Dj3+c3DI 2 ' Dl 2- clD23+c2DI3+c3DI 2" 

D23 [02D13+(c I + c 0  D p ]  , 
D;. -  " - ,  D21- 

"" ClD23 + c2013 + c3D12 

c2DI3 ( D I 2 - 0 2 3 )  

CLD23 + c2Dl3 + c3D12 

Expressions (2.1) are supplemented by the equation of state of the medium 

p = p (q ,  c 2, p ) ,  T = const, (2.2) 

which makes it possible to relate the thermodynamic parameters in (2.1). 
The system of equations (2.1)-(2.2) describes a class of problems that consider isothermal concentration 

convection, including the gas-mixture motion arising in a gravity field in the presence of spatial nonuniformity 
of the density caused by inhomogeneity of the composition. The indicated phenomena have much in common 
with the effects observed in thermal convection, where they are described within the framework of the Boussi- 
nesq approximation [5, 6]. 

We assume that the thermodynamic variables - the concentration of the i-th component ci and the pres- 
sure p - have the form 

ci = ( ' 9  + c i ,  p = + p ' ,  

where (ci) and (p) are the constant mean values, taken as a reference point; c~ and p" are the disturbed charac- 
teristics. The variation in density caused by the nonuniformity of the pressure is small compared to the vari- 
ations caused by the inhomogeneity of the composition and is in conformity with the tact that the pressure 
should not vary strongly along the gas mixture. Considering the smallness of the nonstationary disturbances, 
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neglecting the square terms with respect to the disturbances, we finally obtain (the primes on the disturbed 

quantities are omitted) 

v 2 - -  +//-7")V _ - - L  V p  + v tt--)+ g (~lCl + [~2c2) ~ ,  
~t Po 

OCl +u-"rV (c I (=DI  1V 2 * V2 0t * Cl + D I 2  c2 ' 

0C-~ , , 
Ot + u--)V (c2( = D21 V2 V2 (2.3) - - =  c~ + 022 c 2 , 

div u---~= 0 ,  

I /~)p~ ; 
where v = r l /p;  13i = -  p--~ t~Cm.r., ~,,., y is the unit vector directed vertically upward. 

The boundary conditions are standard for the velocity on the surface of the plane S and are related to 

the vanishing of the normal component of the material flow at the boundary, i.e., 

~c i 

Here n is the normal to the boundary. 
The condition of  mechanical equilibrium is defined as 

1 
-- - -  VP0 "k- g ([~ICI0 "4- ~2('20) ~")= 0 ,  

P0 

D l lV'ClO + Ol2V-c20 = 0 ,  

D21V clo + D22V-c20 = 0 .  

(2.4) 

In this case, the horizontal components of  the gradient of  the concentration are equal to zero: 

OC io ~C io 
- -  - -  - - - - 0  

Ox Oy 

(the plane specified by the x and y axes is perpendicular to z), and then the concentration of  the component 
cio is determined only by the vertical coordinate z. Here, the linear dependence of the concentration on the 

height follows from Eqs. (2.4): 

Q o = - A I z + B I  , c20=-A22+B2 • 

The gradients of  the concentrations of the components at all points of the gas mixture are vertical and have the 

values 

Vclo=-AI~, Vc20=-A2~. 

We rewrite expressions (2.3) in dimensionless form. We take the tbllowing scales of  measurement 
units: the characteristic linear dimension of the cavity d for distance; d2/v for time; D*22/d tbr velocity; Aid tbr 
the concentration of  the i-th component; p0vD~2/d 2 for pressure. Converting, by means of the indicated units, 
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to dimensionless quantities and assuming, by analogy with [5], that Ux = Uy = 0, u_- = u(x), ci = ¢ i ( x ) ,  and Vp 

= 0, we obtain the system of equations tbr the disturbances 

~C I ~2C1 A.~ ~2c~, 
_ _  + " T,I~ - 

at - u = ' C l l  ax  2 Aj  " Ox 2 ' 

~)c-, A 1 ¢)2C 1 c)2C2 
P~,-~ "- - u + - -  - -  a ,  7 ' 

OU - ~  0211 

Ot - 8x  2 
+ Rl 'g  1 iCl + R2c 2 , 

(2.5) 

where Pii = v/D~; Ri = g~iAiaa/vD~; z 6 = D~/D~,2 • 
3. The solution of (2.5) has the form 

cr,c2, u = cf, cz, U°}sin ( n + l ) ~  exp[- )~ t l ,  (3.1) 

where n = l, 3, 5 . . . .  are the characteristic odd modes of  the disturbances. The choice of (3.1) is dictated by 
the occurrence of at least two countercurrents - ascending and descending - in the experiments [ 1-4]. 

The boundary conditions assume the vanishing of the velocity and the disturbances of the concentra- 
tions of the components ci on the vertical planes bounding the layer of the gas mixture: 

u = G  = c 2 = O ,  x = + l .  

Substituting (3.1) into system (2.5) and eliminating successively the concentration and velocity ampli- 
tudes, we obtain a cubic equation with respect to ~, that determines the characteristic roots for any n as a 
function of the parameters - the partial Rayleigh numbers, "~(i, and the Prandti numbers - in the form 

p~,3 + q~2 + r~. + s = 0 ,  (3.2) 

where 

P=P22,  q=P22 ( n + l )  [ - P 2 2 - l - X l l ] ,  

S = ? l +  1 17121~21 n +  1) --1;11 + 

A2 .c~2/R(cl I Al 
+ [ ( n +  1)212[(1-~11 + (~'l -A-22 ~21/]" 

Depending on the values of p, q, r, and s, Eq. (3.2) yields either three real roots (monotonic distur- 
bances) or one real and two complex-conjugate roots (oscillatory disturbances). Following [5, 8], we represent 
)~ = 8 + ira, and then (3.2) leads to the following system of equations for the real and imaginary parts of the 
decrement ~ and m: 

P (t53 _ 38o) z) + q (~2 _ ¢02) + r~  + s = 0 ,  (3.3) 
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Fig. 2. Characteristic regions (1-17) of diffusion mixing for the ternary 
system 0.3409 He (1) + 0.6591 Ar (2) - N2 (3) at T = 298 K and neutral 
lines of monotonic MM and oscillatory OO disturbances, zero gradient of  
the density VO = 0, and the discriminant curve A = 0; points a, b) experi- 
mental data determining stable and unstable states in diffusion of the bi- 
nary mixture to the pure component; c, d) obtained for the case of stable 
and unstable mixing of the pure component with the binary mixture; the 
conditions were varied by changing the pressure: I) 0.58; II) i.56; III) 
2.54 MPa for points a and # and IV) 1.56; V) 3.04; VI) 4.03; VII) 5.7 
MPa for points c and d. 

m [p (382 - m 2) + 2&/+ r] = O. (3.4) 

Hence, we can obtain the spectrum of decrement surfaces determined on the plane of the partial Rayleigh num- 
bers ~.,, = ~.,,(R1, Re) for fixed values of n and the characteristic set of frequencies to,, = c0,,(Rl, R2). 

To determine the boundaries of stability, we set 8 = 0 in (3.3), (3.4) and obtain the critical lines RI(R2) 
for monotonic and oscillatory disturbances and the frequency of neutral oscillations m at the boundary of oscil- 

latory instability in the lorm 

~ll 1---2=~12 Rt+  R2= ( n + l )  (~ll--~l_~'C_~l), (3.5) 

(A A /E 
~ll -- ~1"1712 -- P22 -- "C I1 RI+ -A-72T21-P22 - 1  R2= (n+ 1)~ × 

X I n  -''1 (P22 (1 +ZII)+Zll-g12~21((-P22-1-'~11)-'I~21~12 + g i l l '  U _2 J 
( 3 . 6 )  

2 
CO - -  

E / ' )  IA1 ( n + l )  ['t12"t21--'~ll]+ 1--~--7~:12 R( t lx+  l:ll--~--~'t21 R 2 
- ( 3 . 7 )  

P22 ( -  P2: - 1 - 7:11) 

Expression (3.7) imposes limitations on (3.6) that are associated with the fact that a straight line has the mean- 
ing of a neutral line for oscillatory disturbances only on the portion where co2> 0 [5]. 

307 



From the condition of vanishing of the discriminant of  Eq. (3.2) A(Ri, R2) = 0 the expression 

27p2s 2 - 18pqrs + 4q3s + 4pr 3 - q2r2 = 0 ,  (3.8) 

which describes a third-order curve on the plane (Rh Re) (Fig. 2), follows. In the sectors above it, all the three 
roots of Eq. (3.2) are real, and below it there are one real and two complex-conjugate roots (the disturbances 

oscillate). 
The vanishing of the density gradient of the mixture with account for the determination of  the partial 

Rayleigh numbers (2.5) allows one to obtain the equation of a line on the plane (RI, Re): 

-el i R  I = _ R 2 .  ( 3 . 9 )  

4. To compare the theory with experimental data, we number the components of the mixture: the light- 
est gas (by density) - 1, the heaviest gas - 2, the gas occupying an intermediate position - 3. We consider 
isothermal mixing in the system 0.3409 He (1) + 0.6591 Ar (2) - N2 (3) (the figures before the chemical 
element give the concentration of  the component in mole fractions) at T = 298 K, which is characterized by 
the same density of the binary mixture and the pure component. The experiments were carried out on a setup 
that implements the two-column method by a standard technique [1-4] with the binary mixture being present in 
both the upper and lower columns [1-3, 10]. The columns were connected by a cylindrical channel of  radius r 
= 2.10 -3 m and length L = 7-10 -2 m. Instability was detected in each case, but at different pressures. Here, in 

accordance with (2.17), the partial Rayleigh numbers can be transformed to the form 

4 gnr Ant I Ac I ,¢nr 4 Ant,_ Ac, 
R I - , R , -  

pvD i i L pvD22L 

n=k-~T , AC I - - - - - e l l - - t i l l ,  A ( ' 2 = C 2 1 - -C 2 1 1 ,  AV?I 1 =m~ - m  3 , ~ ' # h = m 2 - m  3 . 

Figure 2 shows lines of  monotonic (MM) and oscillatory (OO) instability and the zero gradient of the 
density (Vp = 0), the discriminant curve (A -- 0), and experimental data on the mixture He + Ar - N2. The 
coordinate axes and the lines divide the plane (Rh R2) into 17 regions with certain characteristics o f  the mode 

of mixing. 
For the first quadrant (Rt > 0, R2 > 0), the condition Vp > 0 is met, under which monotonic distur- 

bances are observed; these disturbances are damped in region 1 and increase in region 2. 
The second quadrant (R1 < 0, R2 > 0) is divided into seven main regions. Region 3, Vp < 0, is charac- 

terized by one monotonic and two oscillatory disturbances; all the disturbances are damped. In sectors 4 and 5, 
Vp > 0, but this does not violate the conditions of stability. In region 6, in spite of  the negative values of Vp 

(stable stratification), the oscillatory disturbances acquire an unstable character (anomalous instability). Region 
7, Vp > 0, is characterized by one diminishing monotonic disturbance and two increasing oscillatory distur- 
bances. In sector 8 the oscillatory disturbances disappear, and in region 9 a monotonic disturbance manifests 

itself. 
The third quadrant corresponds to stable stratification (Vp < 0), in region 11 the disturbances may be 

both monotonic and oscillatory, and in region 10 they are only monotonic, but all the disturbances in this quad- 

rant are diminishing. 
The fourth quadrant involves regions of anomalous instability 15 and 16, where Vp <0 ,  but they lie 

above the line of monotonic instability MM. In regions 13 and 14, Vp > 0, and the mixture is unstable, and in 
17 and 12, Vp <0, and stable diffusion is noted. All the oscillatory disturbances in the fourth quadrant are 

diminishing. 
Figure 2 also presents experimental points obtained at different pressures. To obtain experimental 

points in the second and tburth quadrants similarly to the foregoing we investigated two versions of  position- 
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Fig. 3. Regions of  stable and unstable diffusion for ternary mixtures and 
lines of monotonic MM disturbances and zero gradient of the density Vp 
= 0; a, b) experimental data determining stable and unstable states; the 
system 0.5134 He (I)  + 0.4857 Ar (2) - 0.5184 CH4 (3) + 0.4852 Ar (2); 
the conditions were varied by changing the pressure, the variations corre- 
spond to the values: 1) 0.58; 2) 1.07; 3) 1.54; 4) 2.05; 5) 2.54; 6) 3.05 

MPa. 

ing: 1) the binary mixture is at the top (the fourth quadrant); 2) the binary mixture is at the bottom (the second 
quadrant). The points corresponding to stable diffusion are light, and those tbr the case of  convection are dark. 
It is seen from Fig. 2 that the experiment confirms theoretical predictions about the position of the regions of  
stability and indicates that the instabilities corresponding to the two anomalous regions 6 and 15 can be ob- 
served with one and the same mixture. 

Figure 3 gives theoretical lines of stability and experimental data [1 I] for the mixture 0.5134 He (1) 
+ 0.4857 Ar (2) - 0.5184 CH4 (3) + 0.4852 Ar (2). Since the concentration of the heavy ~,,as• - ar~on~ - is 
virtually the same in both columns, the Rayleigh number R 2 = 0. It is seen that a transition to an unstable state 
occurs in an obviously stable region from the theoretical point of view. The reason for this discrepancy is 

probably a considerable difference in the distribution of the component concentration in this mixture from a 
linear one [121, assumed in (2.5). 

Thus, it is shown that in isothermal mixing of ternary systems there exist two types of anomalous in- 
stability: one at Ri > 0, R 2 < 0 and the other at Rl < 0, R~ > 0. Experiments with a mixture of He + Ar - N2 
with the same density in the columns confirm the presence of these two regions of instability and are well 
described by the theory from the point of view of the location of the boundaries of stability. 

However, fundamental disagreement between experiment and theory is observed in systems with a sub- 
stantially nonlinear distribution of  the concentrations of the components along the length of the diffusion chan- 
nel. Theretbre, to describe mass transfer in these systems, one must develop an appropriate approach to the 

determination of the "true" values of  the gradients of  the component concentrations with account for the sub- 
stantial nonlinearity of their distribution. 

The work was carried out with financial support from the Fund for Science of the Republic of  
Kazakhstan (project 64-98 FN) and the Russian Fund for Fundamental Research (project 98-01-00879). 

N O T A T I O N  

ci, concentration of the i-th component; D~j and D~i, "practical" coefficient of diffusion and coefficient 
.---) 

of mutual diffusion of gases i and j; g, acceleration of gravity; Ji, density of the diffusion flow of the i-th 
component; k, Boltzmann constant; L, length of the diffusion channel; m, mass of the molecule; n, normal to 
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the boundary, mode of the disturbances; Pii, Prandtl number; p, pressure; Ri, Rayleigh number; r, characteristic 
• , " ~  . . . . .  

scale, radius of the diffusion channel; T, temperature; t, time; u, velocity; 13, coefficient o[ shear viscosity; ~., 
time decrement of the disturbances; v, kinematic viscosity of the mixture; ~, coefficient of volumetric viscosity; 
p and P0, density and mean density; %), parameter characterizing the relationship between the "practical" coef- 
ficients of diffusion; e0, frequency of the neutral oscillations. 
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